Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
J Am Mosq Control Assoc ; 40(1): 32-49, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427588

ABSTRACT

The sterile insect technique (SIT) and the incompatible insect technique (IIT) are emerging and potentially revolutionary tools for controlling Aedes aegypti (L.), a prominent worldwide mosquito vector threat to humans that is notoriously difficult to reduce or eliminate in intervention areas using traditional integrated vector management (IVM) approaches. Here we provide an overview of the discovery, development, and application of SIT and IIT to Ae. aegypti control, and innovations and advances in technology, including transgenics, that could elevate these techniques to a worldwide sustainable solution to Ae. aegypti when combined with other IVM practices.


Subject(s)
Aedes , Wolbachia , Animals , Humans , Mosquito Control/methods , Mosquito Vectors , Insecta
2.
Article in English | MEDLINE | ID: mdl-38187816

ABSTRACT

Spatial repellents are volatile or volatilized chemicals that may repel arthropod vectors in free space, preventing bites and reducing the potential for pathogen transmission. In a 21-week field study, we investigated the efficacy of passive transfluthrin-impregnated diffusers placed in two-person United States (US) military tents located in canopy and open field habitats in north Florida to prevent mosquitoes from entering. Mosquito collections with US Centers for Disease Control and Prevention traps baited with light and carbon dioxide were conducted weekly for weeks 0-4, every two weeks for weeks 5-10, and monthly for weeks 11-21. Our results demonstrated that these transfluthrin-impregnated devices did not function as spatial repellents as expected and did not create a mosquito-free zone of protection. Instead, we observed consistently higher collections of mosquitoes from tents with transfluthrin-impregnated diffusers, and higher rates of mosquito mortality in collections from tents with transfluthrin diffusers, compared to untreated control tents. Based on these findings we do not recommend the use of passive transfluthrin-impregnated diffusers for mosquito protection in two-person US military tents in warm-temperate environments similar to north Florida.

3.
J Med Entomol ; 61(1): 166-174, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37788073

ABSTRACT

Control of mosquito vector populations is primarily intended to reduce the transmission of pathogens they transmit. Use of chemical controls, such as larvicides, can have unforeseen consequences on adult traits if not applied properly. The consequences of under application of larvicides are little studied, specifically the impacts on pathogen infection and transmission by the vectors that survive exposure to larvicides. We compared vector susceptibility of Aedes aegypti (L.) for dengue virus, serotype 1 (DENV-1) previously exposed as larvae to an LC50 of different classes of insecticides as formulated larvicides. Larval exposure to insect growth regulators (methoprene and pyriproxyfen) significantly increased susceptibility to infection of DENV-1 in Ae. aegypti adults but did not alter disseminated infection or transmission. Larval exposure to temephos, spinosad, and Bti did not increase infection, disseminated infection, or transmission of DENV-1. Our findings describe a previously under observed phenomenon, the latent effects of select larvicides on mosquito vector susceptibility for arboviruses. These data suggest that there are unintended consequences of sublethal exposure to select larvicides that can influence susceptibility of Ae. aegypti to DENV infection, and indicates the need for further investigation of sublethal effects of insecticides on other aspects of mosquito biology, especially those parameters relevant to a mosquitoes ability to transmit arboviruses (life span, biting behavior, extrinsic incubation period).


Subject(s)
Aedes , Dengue Virus , Dengue , Insecticides , Animals , Dengue/prevention & control , Insecticides/pharmacology , Larva , Mosquito Vectors , Temefos/pharmacology
4.
J Agric Food Chem ; 71(47): 18285-18291, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37916736

ABSTRACT

The emergence of pyrethroid-resistant mosquitoes is a worldwide problem that necessitates further research into the development of new repellents and insecticides. This study explored the modification of existing pyrethroid acids to identify structural motifs that might not be affected by kdr active site mutations that elicit pyrethroid resistance. Because synthetic pyrethroids almost always contain activity-dependent chiral centers, we chose to focus our efforts on exploring alkoxy moieties of esters obtained with 1R-trans-permethrinic and related acids, which we showed in previous studies to have repellent and/or repellent synergistic properties. To this end, compounds were synthesized and screened for spatially acting repellency and insecticidal activity against the susceptible, Orlando, and pyrethroid-resistant, Puerto Rico, strains of Aedes aegypti mosquito. Screening utilized a high-throughput benchtop glass tube assay, and the compounds screened included a mixture of branched, unbranched, aliphatic, halogenated, cyclic, non-cyclic, and heteroatom-containing esters. Structure-activity relationships indicate that n-propyl, n-butyl, n-pentyl, cyclobutyl, and cyclopentyl substituents exhibited the most promising repellent activity with minimal kdr cross resistance. Preliminary testing showed that these small alcohol esters can be synergistic with phenyl amides and pyrethroid acids. Further derivatization of pyrethroid acids offer an interesting route to future active compounds, and while mosquitoes were the focus of this work, pyrethroid acids and esters have potential for use in reducing pest populations and damage in cropping systems as well.


Subject(s)
Aedes , Insect Repellents , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Insecticides/chemistry , Pyrethrins/pharmacology , Pyrethrins/chemistry , Esters/pharmacology , Insect Repellents/pharmacology , Insect Repellents/chemistry , Ethanol , Insecticide Resistance
5.
J Med Entomol ; 60(6): 1197-1213, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37862067

ABSTRACT

Rift Valley fever virus (RVFV) (Bunyavirales: Phlebovirus) is a prominent vector-borne zoonotic disease threat to global agriculture and public health. Risks of introduction into nonendemic regions are tied to changing climate regimes and other dynamic environmental factors that are becoming more prevalent, as well as virus evolutionary factors and human/animal movement. Endemic to the African continent, RVFV has caused large epizootics at the decadal scale since the early 20th century but has spread to the Arabian Peninsula and shows increasing patterns of interepizootic transmission on the annual scale. This virus can be transmitted by mosquitoes as well as through direct contact with infected tissues and can cause sporadic to widespread morbidity and mortality in domestic ungulate livestock as well as humans. High viremias in infected livestock moved for legal and illegal trade as well as in infected mosquitoes or human travelers can spread this virus worldwide. With increasing global commerce, it is likely RVFV will be introduced to new areas with suitable hosts, mosquito vector species, and environments. However, the strong mosquito component of RVFV epidemiology combined with advancements in vaccines, diagnostics, and virus evolutionary factors create opportunities for strategies to leverage models of connectivity among potential source and emerging regions to target surveillance and mitigation activities to reduce the risk of RVFV introduction, or contain the virus should it be introduced, into new regions.


Subject(s)
Culicidae , Phlebovirus , Rift Valley Fever , Rift Valley fever virus , Animals , Humans , Rift Valley Fever/epidemiology , Rift Valley Fever/prevention & control , Zoonoses/prevention & control
6.
Parasit Vectors ; 16(1): 10, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36627717

ABSTRACT

Mosquito vectors of eastern equine encephalitis virus (EEEV) and West Nile virus (WNV) in the USA reside within broad multi-species assemblages that vary in spatial and temporal composition, relative abundances and vector competence. These variations impact the risk of pathogen transmission and the operational management of these species by local public health vector control districts. However, most models of mosquito vector dynamics focus on single species and do not account for co-occurrence probabilities between mosquito species pairs across environmental gradients. In this investigation, we use for the first time conditional Markov Random Fields (CRF) to evaluate spatial co-occurrence patterns between host-seeking mosquito vectors of EEEV and WNV around sampling sites in Manatee County, Florida. Specifically, we aimed to: (i) quantify correlations between mosquito vector species and other mosquito species; (ii) quantify correlations between mosquito vectors and landscape and climate variables; and (iii) investigate whether the strength of correlations between species pairs are conditional on landscape or climate variables. We hypothesized that either mosquito species pairs co-occur in patterns driven by the landscape and/or climate variables, or these vector species pairs are unconditionally dependent on each other regardless of the environmental variables. Our results indicated that landscape and bioclimatic covariates did not substantially improve the overall model performance and that the log abundances of the majority of WNV and EEEV vector species were positively dependent on other vector and non-vector mosquito species, unconditionally. Only five individual mosquito vectors were weakly dependent on environmental variables with one exception, Culiseta melanura, the primary vector for EEEV, which showed a strong correlation with woody wetland, precipitation seasonality and average temperature of driest quarter. Our analyses showed that majority of the studied mosquito species' abundance and distribution are insignificantly better predicted by the biotic correlations than by environmental variables. Additionally, these mosquito vector species may be habitat generalists, as indicated by the unconditional correlation matrices between species pairs, which could have confounded our analysis, but also indicated that the approach could be operationalized to leverage species co-occurrences as indicators of vector abundances in unsampled areas, or under scenarios where environmental variables are not informative.


Subject(s)
Culex , Culicidae , Encephalitis Virus, Eastern Equine , Encephalomyelitis, Eastern Equine , Encephalomyelitis, Equine , West Nile Fever , West Nile virus , Animals , Horses , Mosquito Vectors , Insect Vectors , Encephalomyelitis, Equine/epidemiology
7.
Pest Manag Sci ; 79(3): 1175-1183, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36424673

ABSTRACT

BACKGROUND: The sterile insect technique (SIT) is emerging as a tool to supplement traditional pesticide-based control of Aedes aegypti, a prominent mosquito vector of microbes that has increased the global burden of human morbidity and mortality over the past 50 years. SIT relies on rearing, sterilizing and releasing large numbers of male mosquitoes that will mate with fertile wild females, thus reducing production of offspring from the target population. In this study, we investigated the effects of ionizing radiation (gamma) on male and female survival, longevity, mating behavior, and sterility of Ae. aegypti in a dose-response design. This work is a first step towards developing an operational SIT field suppression program against Ae. aegypti in St. Augustine, Florida, USA. RESULTS: Exposing late-stage pupae to 50 Gy of radiation yielded 99% male sterility while maintaining similar survival of pupae to adult emergence, adult longevity and male mating competitiveness compared to unirradiated males. Females were completely sterilized at 30 Gy, and when females were dosed with 50 Gy, they had a lower incidence of blood-feeding than unirradiated females. CONCLUSION: Our work suggests that an ionizing radiation dose of 50 Gy should be used for future development of operational SIT in our program area because at this dose males are 99% sterile while maintaining mating competitiveness against unirradiated males. Furthermore, females that might be accidentally released with sterile males as a result of errors in sex sorting also are sterile and less likely to blood-feed than unirradiated females at our 50 Gy dose. © 2022 Society of Chemical Industry.


Subject(s)
Aedes , Mosquito Control , Animals , Female , Male , Aedes/physiology , Fertility , Infertility, Male , Insecta , Mosquito Control/methods , Sexual Behavior, Animal
8.
Parasit Vectors ; 15(1): 446, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36443811

ABSTRACT

BACKGROUND: The yellow fever mosquito, Aedes aegypti, vectors several pathogens responsible for human diseases. As a result, this mosquito species is a priority for control by mosquito control districts in Florida. With insecticide resistance development becoming a concern, alternative control strategies are needed for Ae. aegypti. Sterile insect technique (SIT) is an increasingly popular option that is being explored as a practical area-wide control method. However, questions about sterile male performance persist. The objectives of this study were to determine the extent to which hypoxia exposure prior to and during irradiation effects the longevity, activity and mating competitiveness of sterile male Ae. aegypti. METHODS: Male longevity was monitored and analyzed using Cox regression. Mosquito activity was recorded by an infrared beam sensor rig that detected movement. Competing models were created to analyze movement data. Fecundity and fertility were measured in females mated with individual males by treatment and analyzed using one-way ANOVAs. Mating competition studies were performed to compare both hypoxia and normoxia treated sterile males to fertile males. Competitiveness of groups was compared using Fried's competitiveness index. RESULTS: First, we found that subjecting Ae. aegypti pupae to 1 h of severe hypoxia (< 1 kPa O2) did not directly increase mortality. One hour of hypoxia was found to prevent decreases in longevity of irradiated males compared to males irradiated in normoxic conditions. Exposure to hypoxia prior to irradiation did not significantly improve activity of sterile males except at the highest doses of radiation. Hypoxia did significantly increase the required dose of radiation to achieve > 95% male sterility compared to males irradiated under normoxic conditions. Males sterilized after an hour in hypoxic conditions were significantly more competitive against fertile males compared to males irradiated under normoxic conditions despite requiring a higher dose of radiation to achieve sterility. CONCLUSIONS: Hypoxia was found to greatly improve key performance metrics in sterile male Ae. aegypti without any significant drawbacks. Little work other than increasing the target dose for sterility needs to be conducted to incorporate hypoxia into SIT programs. These results suggest that SIT programs should consider including hypoxia in their sterile male production workflow.


Subject(s)
Aedes , Infertility, Male , Female , Humans , Animals , Male , Pupa , Mosquito Vectors , Infertility, Male/prevention & control , Hypoxia
9.
J Am Mosq Control Assoc ; 38(4): 250-260, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36318783

ABSTRACT

Chemical control of vectors depends on the effective application of formulated insecticides. In this study we evaluated formulated larvicides using a larval bioassay against susceptible Aedes aegypti. The estimated larvicide lethal concentrations for 50% mortality (LC50s) were 25.7 µg/liter (Natular 2EC), 3.13 µg/liter (Abate 4E), 0.43 µg/liter (Altosid), 0.03 µg/liter (Nyguard), and 500.6 ITU/liter (VectoBac12AS containing Bacillus thuringiensis israelensis). Sublethal effects were identified and documented from adults that survived exposure to these estimated LC50s (body size and sex proportion). We observed changes in net growth as measured by adult wing lengths. For those larvae exposed to estimated LC50s, the average size of adults was between 0.1% and 10.6% smaller for males and between 1.1% and 13.6% smaller for females compared to controls. Sex proportions varied between larvicides, but some were significantly different from the control, favoring greater survival of females than males.


Subject(s)
Aedes , Bacillus thuringiensis , Insecticides , Animals , Female , Male , Mosquito Control , Mosquito Vectors , Temefos/pharmacology , Insecticides/pharmacology , Larva
10.
Insects ; 13(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35206782

ABSTRACT

To discover new natural materials for insect management, commercially available stored sheep wool was investigated for attractancy to female adult Aedes aegypti mosquitoes. The volatiles from sheep wool were collected by various techniques of headspace (HS) extractions and hydrodistillation. These extracts were analyzed using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID) coupled with GC-MS. Fifty-two volatile compounds were detected, many of them known for their mosquito attractant activity. Seven compounds were not previously reported in sheep products. The volatile composition of the extracts varied significantly across collections, depending on the extraction techniques or types of fibers applied. Two types of bioassay were conducted to study attractancy of the sheep wool volatiles to mosquitoes: laboratory bioassays using glass tubes, and semi-field bioassays using large, screened outdoor cages. In bioassays with glass tubes, the sheep wool hydrodistillate and its main component, thialdine, did not show any significant attractant activity against female adult Ae. aegypti mosquitoes. Semi-field bioassays in two large screened outdoor cages, each equipped with a U.S. Centers for Disease Control (CDC) trap and the various bait setups with Vortex apparatus, revealed that vibrating wool improved mosquito catches compared to the setups without wool or with wool but not vibrating. Sheep wool, when vibrated, may release intensively volatile compounds, which could serve as olfactory cues, and play significant role in making the bait attractive to mosquitoes. Sheep wool is a readily available, affordable, and environment-friendly material. It should have the potential to be used as a mosquito management and surveillance component in dynamic bait setups.

11.
Article in English | MEDLINE | ID: mdl-36589865

ABSTRACT

Mortality caused by passive resin transfluthrin diffusers (∼5 mg AI per 24 h release rate) suspended in small 2-person tents was measured for colony-reared sentinel pyrethroid susceptible Aedes aegypti and Culex quinquefasciatus female mosquitoes, as well as a pyrethroid-resistant strain of Aedes aegypti, in a USA military field camp scenario. Mortality effects were investigated for impact by factors such as sentinel cage location (inside tent, tent doorway and outside tent), exposure time (15, 30, 45 and 60 min), and environmental temperature (°C), all of which were examined over an 8-week period. Analyses determined there was a significant interaction between mosquito strain and transfluthrin susceptibility, with the two susceptible strains experiencing significantly greater mean mortality than the resistant Ae. aegypti strain. Significant differences were likewise observed between the mosquito strains over the 8-week study period, where study week and temperature were both positively correlated with an increase in observed mean mosquito mortality. Mosquito proximity to the transfluthrin diffusers was also influenced by week and showed that sentinel cage placement in the environment demonstrates different mortality measurements, depending on the environmental conditions. The length of exposure to transfluthrin, however, was determined to not significantly impact transfluthrin efficacy on the examined mosquito strains, although increased exposure did result in increased susceptible strain mortality. These results suggest that transfluthrin is highly effective in causing mortality against susceptible Ae. aegypti and Cx. quinquefasciatus mosquitoes under field conditions but is minimally effective against pyrethroid-resistant Ae. aegypti mosquitoes. Transfluthrin-infused devices are influenced by environmental factors that can combine to impact mosquito mortality in the field.

12.
J Agric Food Chem ; 69(33): 9684-9692, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34387470

ABSTRACT

The use of N-aryl amide derivatives as spatially acting insecticides remains relatively unexplored. To expand this knowledge, we synthesized eighty-nine N-aryl amide analogues and screened them for mortality against an insecticide-susceptible strain of Aedes aegypti mosquitoes, Orlando (OR), using a vapor exposure glass tube assay. Of the screened compounds, twenty-two produced >92% mortality at 24 h and warranted further investigation to determine LC50 values. Fifteen of these analogues had LC50 values within 2 orders of magnitude of transfluthrin, and of significant interest, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,3,3,3-pentafluoropropanamide (compound 70) was nearly as potent as transfluthrin and exhibited greater toxicity than metofluthrin when screened against OR A. aegypti. Compounds exhibiting potent toxicity against OR A. aegypti or whose structure-activity relationship potentially offered beneficial insights into structure optimization were screened against the insecticide-resistant, Puerto Rico (PR), strain of A. Aegypti, and it was discovered that not only did these N-arylamides typically show little resistance, some such as N-(2,6-dichloropyridin-4-yl)-2,2,3,3,4,4,4-heptafluorobutanamide (compound 36) and 2,2,3,3,4,4,4-heptafluoro-N-(3,4,5-trifluorophenyl)butanamide (compound 40) were actually more potent against the PR mosquitoes. Due to this promising insecticidal activity, five compounds were administered orally to mice to determine acute oral rodent toxicity. All five compounds were found to have mouse oral toxicity LD50 values well above the minimum safe level as set by the Innovative Vector Control Consortium (50 mg/kg). In addition to the promising biological activity documented here, we report the structure-activity relationship analysis used to guide the derivatization approach taken and to further inform future efforts in the development of N-arylamides as potential resistance-breaking, spatially acting insecticides.


Subject(s)
Aedes , Insecticides , Animals , Biological Assay , Insecticides/pharmacology , Mice , Mosquito Vectors , Structure-Activity Relationship
13.
J Am Mosq Control Assoc ; 37(1): 41-45, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33857316

ABSTRACT

Recent experiments suggest spatial repellents may significantly reduce biting pressure from host-seeking riceland mosquitoes, such as Anopheles quadrimaculatus, in a warm-humid open-field habitat. However, little is known regarding efficacy of these formulations in partially enclosed spaces where US military personnel may be sheltered or concealed in an operational environment. In this study we investigated the capability of 3 spatial repellents-metofluthrin, linalool, and d-cis/trans allethrin-to reduce mosquito incursion into small open-top enclosures of US military camouflage netting. We found that metofluthrin was more effective in partially enclosed spaces compared with the open field, whereas both linalool and d-cis/trans allethrin provided superior protection in the open. These findings support strategic selection of spatial repellents depending on the environment immediately surrounding the host.


Subject(s)
Acyclic Monoterpenes , Allethrins , Culicidae , Cyclopropanes , Fluorobenzenes , Insect Repellents , Animals , Environment , Female
14.
J Vis Exp ; (169)2021 03 12.
Article in English | MEDLINE | ID: mdl-33779612

ABSTRACT

The control of such human diseases as dengue, Zika, and chikungunya relies on the control of their vector, the Aedes aegypti mosquito, because there is no prevention. Control of mosquito vectors can rely on chemicals applied to the immature and adult stages, which can contribute to the mortality of non-targets and more importantly, lead to insecticide resistance in the vector. The sterile insect technique (SIT) is a method of controlling populations of pests through the release of sterilized adult males that mate with wild females to produce non-viable offspring. This paper describes the process of producing sterile males for use in an operational SIT program for the control of Aedes aegypti mosquitoes. Outlined here are the steps used in the program including rearing and maintaining a colony, separating male and female pupae, irradiating and marking adult males, and shipping Aedes aegypti males to the release site. Also discussed are procedural caveats, program limitations, and future objectives.


Subject(s)
Aedes/physiology , Fertility/radiation effects , Insecticide Resistance , Mosquito Control/methods , Mosquito Vectors/physiology , Pupa/physiology , Sterilization, Reproductive/methods , Aedes/radiation effects , Animals , Female , Humans , Male , Mosquito Vectors/radiation effects , Pupa/radiation effects
15.
PLoS One ; 16(3): e0248462, 2021.
Article in English | MEDLINE | ID: mdl-33684149

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0233279.].

16.
Article in English | MEDLINE | ID: mdl-35284890

ABSTRACT

It is important to identify repellents that can provide reliable protection from arthropod biting and prevent arthropod-borne diseases, such as malaria. In the present study, the spatial repellent activity and toxicity of two novel pyridinyl amides (1 and 2) were evaluated against Anopheles albimanus, Anopheles quadrimaculatus, and Anopheles gambiae. In vapor repellency bioassays, compound 2 was generally more effective than DEET and 2-undecanone, while compound 1 was about as active as these standards. Overall, transfluthrin was the most active compound for inducing anopheline mosquito repellency, knockdown, and lethality. Although they were not the most active repellents, the two experimental amides produced the largest electroantennographic responses in female antennae. They also displayed modest toxicity to anopheline mosquitoes. Significant synergism of repellency was observed for the mixture of a pyrethroid-derived acid and the repellent 2-undecanone against anopheline mosquitoes, similar to that observed previously in Aedes aegypti. Overall, this study provides insight for further synthesis of alternative amide compounds for use as spatial treatments.

17.
J Med Entomol ; 58(1): 475-479, 2021 01 12.
Article in English | MEDLINE | ID: mdl-32740665

ABSTRACT

Research on the functions of insect chemoreceptors have primarily focused on antennae (olfactory receptors) and mouthparts (gustatory receptors). However, chemoreceptive sensilla are also present on other appendages, such as the leg tarsi and the anterior wing margin, and their specific roles in chemoreception and mosquito behavior remain largely unknown. In this study, electrophysiological analyses in an electroantennogram recording format were performed on Aedes aegypti (L., Diptera: Culicidae) antennae, mouthparts, tarsi, and wings during exposure to a variety of insect repellent and attractant compounds. The results provide evidence that the tarsi and wings can sense chemicals in a gaseous form, and that the odors produce differing responses on different appendages. The most consistent and strongest response occurred when exposed to triethylamine (TEA). Antennae and mouthparts showed nearly identical responses pattern to all tested compounds, and their rank orders of effectiveness were similar to those of fore- and mid-leg tarsi. Hindleg tarsi only responded to TEA, indicating that the hind legs are not as chemoreceptive. Wings responded to a range of odorants, but with a different rank order and voltage amplitude. Insights gleaned into the function of these appendages in insect chemoreception are discussed.


Subject(s)
Aedes/drug effects , Arthropod Antennae/physiology , Insect Repellents/administration & dosage , Pheromones/administration & dosage , Wings, Animal/physiology , Aedes/cytology , Aedes/physiology , Animals , Arthropod Antennae/cytology , Arthropod Antennae/drug effects , Chemoreceptor Cells/cytology , Chemoreceptor Cells/drug effects , Chemoreceptor Cells/physiology , Extremities/anatomy & histology , Extremities/physiology , Receptors, Odorant/physiology , Taste Perception/drug effects , Taste Perception/physiology , Wings, Animal/cytology , Wings, Animal/drug effects
18.
PLoS One ; 15(12): e0233279, 2020.
Article in English | MEDLINE | ID: mdl-33315866

ABSTRACT

The first documented Rift Valley hemorrhagic fever outbreak in the Arabian Peninsula occurred in northwestern Yemen and southwestern Saudi Arabia from August 2000 to September 2001. This Rift Valley fever outbreak is unique because the virus was introduced into Arabia during or after the 1997-1998 East African outbreak and before August 2000, either by wind-blown infected mosquitos or by infected animals, both from East Africa. A wet period from August 2000 into 2001 resulted in a large number of amplification vector mosquitoes, these mosquitos fed on infected animals, and the outbreak occurred. More than 1,500 people were diagnosed with the disease, at least 215 died, and widespread losses of domestic animals were reported. Using a combination of satellite data products, including 2 x 2 m digital elevation images derived from commercial satellite data, we show rainfall and potential areas of inundation or water impoundment were favorable for the 2000 outbreak. However, favorable conditions for subsequent outbreaks were present in 2007 and 2013, and very favorable conditions were also present in 2016-2018. The lack of subsequent Rift Valley fever outbreaks in this area suggests that Rift Valley fever has not been established in mosquito species in Southwest Arabia, or that strict animal import inspection and quarantine procedures, medical and veterinary surveillance, and mosquito control efforts put in place in Saudi Arabia following the 2000 outbreak have been successful. Any area with Rift Valley fever amplification vector mosquitos present is a potential outbreak area unless strict animal import inspection and quarantine proceedures are in place.


Subject(s)
Rift Valley Fever/epidemiology , Rift Valley Fever/history , Africa, Eastern/epidemiology , Animals , Animals, Domestic , Arabia/epidemiology , Disease Outbreaks , History, 21st Century , Humans , Rift Valley fever virus/pathogenicity , Saudi Arabia/epidemiology , Vector Borne Diseases/epidemiology , Yemen/epidemiology
19.
J Agric Food Chem ; 68(47): 13960-13969, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33147044

ABSTRACT

A total of 115 aryl amides were synthesized and screened for vapor repellency against the Orlando (OR) strain of Aedes aegypti mosquitoes. Of these compounds, 29 had 1 h repellency EC50 values comparable to or better than N,N-diethyl-meta-toluamide (DEET, 1 h EC50 value of 35 µg/cm2), with 2,2,3,3,3-pentafluoro-N-(4-fluorophenyl)propenamide (53) and 2,2,3,3,4,4,4-heptafluoro-N-(3,4,5-trifluorophenyl)butanamide (101) exhibiting the most potent EC50 values of 4.5 and 2.9 µg/cm2, respectively. The cross-resistance of select, highly potent, derivatives against the pyrethroid-resistant Puerto Rico (PR) strain of A. aegypti was also investigated, and little to no resistance was observed. When synergized with 1R-trans-permethrinic acid (TFA), compound 101 had a 1 h EC50 value 6 times lower than metofluthrin against OR and 40 times lower against PR mosquitoes. Additionally, preliminary mammalian oral toxicity was screened for compounds 69 and 101, and both exhibited LD50 values of >2000 mg/kg. The structure-activity relationship analysis, which guided the synthesis of these derivatives, is given, and key trends are highlighted to inform future analogue design.


Subject(s)
Aedes , Insect Repellents , Animals , DEET/pharmacology , Insect Repellents/pharmacology , Puerto Rico , Structure-Activity Relationship
20.
Sci Rep ; 10(1): 17737, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33060691

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...